Classification Confidence Of Fuzzy Rule-Based Classifiers
نویسندگان
چکیده
In this paper we first introduce the concept of classification confidence in fuzzy rule-based classification. Classification confidence shows the strength of classification for an unseen pattern. Low classification confidence for an unseen pattern means that the classification of that pattern is not very clear compared to that with high classification confidence. Then we focus on the minimum classification confidence for fuzzy rule-based classifiers using the classification confidence. The minimum classification confidence represents the worst classification among given training patterns. Some discussion on assigning a weight to training pattern is given to show that cost-sensitive fuzzy rule-based classifiers are advantageous for producing a large minimum-confidence classifiers. A series of experiments are done in order to show that reasonable classification boundaries can be obtained by cost-sensitive fuzzy rule-based classifiers if appropriate weights are assigned to training patterns.
منابع مشابه
ارائهروش جدید مبتنیبر برنامهنویسی ژنتیک برای وزندهی قوانین فازی در طبقهبندی نامتوازن
In classification problems, we often encounter datasets with different percentage of patterns (i.e. classes with a high pattern percentage and classes with a low pattern percentage). These problems are called “classification Problems with imbalanced data-sets”. Fuzzy rule based classification systems are the most popular fuzzy modeling systems used in pattern classification problems. Rule weights...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملFuzzy Apriori Rule Extraction Using Multi-Objective Particle Swarm Optimization: The Case of Credit Scoring
There are many methods introduced to solve the credit scoring problem such as support vector machines, neural networks and rule based classifiers. Rule bases are more favourite in credit decision making because of their ability to explicitly distinguish between good and bad applicants.In this paper multi-objective particle swarm is applied to optimize fuzzy apriori rule base in credit scoring. ...
متن کاملSUBCLASS FUZZY-SVM CLASSIFIER AS AN EFFICIENT METHOD TO ENHANCE THE MASS DETECTION IN MAMMOGRAMS
This paper is concerned with the development of a novel classifier for automatic mass detection of mammograms, based on contourlet feature extraction in conjunction with statistical and fuzzy classifiers. In this method, mammograms are segmented into regions of interest (ROI) in order to extract features including geometrical and contourlet coefficients. The extracted features benefit from...
متن کاملA QUADRATIC MARGIN-BASED MODEL FOR WEIGHTING FUZZY CLASSIFICATION RULES INSPIRED BY SUPPORT VECTOR MACHINES
Recently, tuning the weights of the rules in Fuzzy Rule-Base Classification Systems is researched in order to improve the accuracy of classification. In this paper, a margin-based optimization model, inspired by Support Vector Machine classifiers, is proposed to compute these fuzzy rule weights. This approach not only considers both accuracy and generalization criteria in a single objective fu...
متن کامل